N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution.
نویسندگان
چکیده
Humans and chimpanzees share >99% identity in most proteins. One rare difference is a human-specific inactivating deletion in the CMAH gene, which determines biosynthesis of the sialic acid N-glycolylneuraminic acid (Neu5Gc). Since Neu5Gc is prominent on most chimpanzee cell surfaces, this mutation could have affected multiple systems. However, Neu5Gc is found in human cancers and fetuses and in trace amounts in normal human tissues, suggesting an alternate biosynthetic pathway. We inactivated the mouse Cmah gene and studied the in vivo consequences. There was no evidence for an alternate pathway in normal, fetal, or malignant tissue. Rather, null fetuses accumulated Neu5Gc from heterozygous mothers and dietary Neu5Gc was incorporated into oncogene-induced tumors. As with humans, there were accumulation of the precursor N-acetylneuraminic acid and increases in sialic acid O acetylation. Null mice showed other abnormalities reminiscent of the human condition. Adult mice showed a diminished acoustic startle response and required higher acoustic stimuli to increase responses above the baseline level. In this regard, histological abnormalities of the inner ear occurred in older mice, which had impaired hearing. Adult animals also showed delayed skin wound healing. Loss of Neu5Gc in hominid ancestors approximately 2 to 3 million years ago likely had immediate and long-term consequences for human biology.
منابع مشابه
Evolution of human-chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid.
Chimpanzees are the closest evolutionary cousins of humans, sharing >99% identity in most protein sequences. Plasmodium falciparum is the major worldwide cause of malaria mortality. Plasmodium reichenowi, a morphologically identical and genetically very similar parasite, infects chimpanzees but not humans. Conversely, experimental P. falciparum infection causes brief moderate parasitization and...
متن کاملNovel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid
The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc "xeno-autoantibody" response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We...
متن کاملN-glycolylneuraminic acid deficiency in humans.
Classic studies suggested that the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans, being immunogenic in adult humans and yet apparently expressed in human fetuses and tumors. We and others have recently found that the human deficiency of Neu5Gc can be explained by an inactivating mutation in the gene encoding CMP-N-acetylneuraminic acid hydroxy...
متن کاملA Comparative Study of N-glycolylneuraminic Acid (Neu5Gc) and Cytotoxic T Cell (CT) Carbohydrate Expression in Normal and Dystrophin-Deficient Dog and Human Skeletal Muscle
The expression of N-glycolylneuraminic acid (Neu5Gc) and the cytotoxic T cell (CT) carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95%) in muscle from normal golden r...
متن کاملN-glycolyl groups of nonhuman chondroitin sulfates survive in ancient fossils.
Biosynthesis of the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc) was lost during human evolution due to inactivation of the CMAH gene, possibly expediting divergence of the Homo lineage, due to a partial fertility barrier. Neu5Gc catabolism generates N-glycolylhexosamines, which are potential precursors for glycoconjugate biosynthesis. We carried out metabolic labeling experi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 27 12 شماره
صفحات -
تاریخ انتشار 2007